当前位置:首页 > 脑立体定位仪 > 双臂数显脑定位仪
脑立体定位仪

双臂数显脑定位仪

时间:2021-11-08来源:本站作者:玉研仪器

详细介绍

数显型脑立体定位仪(Digital Lab Standard™ Stereotaxic Instrument)源于U型框脑立体定位仪。具有标准型脑立体定位仪的所有特点,且在原有标准脑立体定位仪的三维操作臂上增加了位移传感器和LCD数字显示屏,X、Y、Z三轴移动距离可在LCD显示屏上实时显示。

 

双臂型双数显型脑立体定位仪Instrument Stereotaxic Standard Lab结构紧凑坚固,可以增加各种动物适配器,电极固定器注射装置,颅钻等。进行各种动物脑位区定位,注射给药,电极引导固定等工作。大鼠双臂标准系列脑立体定位仪在两边都有3向定位的操作臂,第二条操作臂可以根据手的习惯适当的扭转,两个操作臂在进行双注射或是边刺激边记录的时候,就非常有必要了。

 

数显型脑立体定位仪的主要特点:

· 操作灵活、简便,标配大鼠适配器

· 用户无需前后查看数据,直接读取X、Y、Z轴移动距离;通过LED读数效率更高备

· 通过LED读数,三轴精确度都提高达到10微米

· 归零功能X、Y、Z轴坐标可在显示屏上完成任意点归零,根据图谱直接进行定位,避免二次读数及计算,简化了实验操作过程

· 具备存储功能

· 操作臂移动范围(上下,左右,前后):三方向移动距离80mm

· 垂直方向90度位置锁定

· 该脑立体定位仪,可增加其动物它适配器(如小鼠,猫),操作臂,电极固定器,增加注射装置,颅钻等

· 选择使用不同的固定适配器器,可用于多种动物:小鼠,大鼠幼鼠,大鼠,小鸟,豚鼠,猫,猴


脑立体定位仪的主要构造:

 

  


数字脑立体定位系统每个轴的操纵臂上都增加了密闭的电子传感器,避免了外界的干扰和环境的影响。在三个方向的测量精度都提高到10微米。LED显示模块可读取三个方向的移动距离。移动的单位在1mm到10微米之间可选择。

 

归零功能

可以使用户快速的在实验动物颅骨上设定一个参考点。因此可节省了用户的宝贵时间并提高了精确度
归零功能的设置很简单,在每个轴的任何位置都可以设置为“零”,这样使实验变得简单和直接。1。需找参考点“Bregma”。2.将所有的坐标值设为“零”。3.移动操纵臂到目标位置点。

 

存储功能

目标的坐标值可以被保存到51900和51903等数字脑立体定位仪的显示盒中。


标准型,大鼠,双臂脑定位仪:


 


数显型标准型,大鼠,双臂脑定位仪:



ITEM

DESCRIPTION

51603

双臂,标准,大鼠,18°耳棒

51653

双臂,标准,大鼠,45°耳棒

51903

数显,双臂,大鼠,18°耳棒

51953

数显,双臂,大鼠,45°耳棒

51603U

超精密,精度0.01mm,双臂,大鼠,18°耳棒


SA-151 数显型双臂脑立体定位仪


 
标准型数显定位仪:



高精型数字定位仪:



脑立体定位仪相关配件及可选配件:


大鼠门牙固定适配器

小鼠固定适配器


 


电极夹持器

电极、螺帽、注射器夹持器


电极、注射器夹持器


微量注射器


微量注射泵




颅骨钻

 

参考文献:

1. Albéri, L., Lintas, A., Kretz, R., Schwaller, B., & Villa, A. E. (2013). The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons. Journal of neurophysiology, 109(11), 2827-2841.

2. Sonati, T., Reimann, R. R., Falsig, J., Baral, P. K., O’Connor, T., Hornemann, S., Aguzzi, A. (2013). The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature, 501(7465), 102-106.

3. Ali, I., O’Brien, P., Kumar, G., Zheng, T., Jones, N. C., Pinault, D., O’Brien, T. J. (2013). Enduring Effects of Early Life Stress on Firing Patterns of Hippocampal and Thalamocortical Neurons in Rats: Implications for Limbic Epilepsy. PLOS ONE, 8(6), e66962.

4. Bell, L. A., Bell, K. A., & McQuiston, A. R. (2013). Synaptic Muscarinic Response Types in Hippocampal CA1 Interneurons Depend on Different Levels of Presynaptic Activity and Different Muscarinic Receptor Subtypes. Neuropharmacology.

5. Bolzoni, F., Bączyk, M., & Jankowska, E. (2013). Subcortical effects of transcranial direct current stimulation (tDCS) in the rat. The Journal of Physiology.

6. Bolzoni, F., Bączyk, M., & Jankowska, E. (2013). Subcortical effects of transcranial direct current stimulation (tDCS) in the rat. The Journal of Physiology.

7. Babaei, P., Tehrani, B. S., & Alizadeh, A. (2013). Effect of BDNF and adipose derived stem cells transplantation on cognitive deficit in Alzheimer model of rats. Journal of Behavioral and Brain Science, 3, 156-161.

8. Gilmartin, M. R., Miyawaki, H., Helmstetter, F. J., & Diba, K. (2013). Prefrontal Activity Links Nonoverlapping Events in Memory. The Journal of Neuroscience, 33(26), 10910-10914.

9. Feng, L., Sametsky, E. A., Gusev, A. G., & Uteshev, V. V. (2012). Responsiveness to nicotine of neurons of the caudal nucleus of the solitary tract correlates with the neuronal projection target. Journal of Neurophysiology, 108(7), 1884-1894.

10. Clarner, T., Diederichs, F., Berger, K., Denecke, B., Gan, L., Van der Valk, P., Kipp, M. (2012). Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia, 60(10), 1468-1480.

11. Girardet, C., Bonnet, M. S., Jdir, R., Sadoud, M., Thirion, S., Tardivel, C., Troadec, J. D. (2011). Central inflammation and sickness-like behavior induced by the food contaminant deoxynivalenol: A PGE2-independent mechanism.Toxicological Sciences, 124(1), 179-191.

12. Hruška-Plocháň, M., Juhas, S., Juhasova, J., Galik, J., Miyanohara, A., Marsala, M., Motlik, J. (2010). A27 Expression of the human mutant huntingtin in minipig striatum induced formation of EM48+ inclusions in the neuronal nuclei, cytoplasm and processes. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A9.

13. Brooks, S., Jones, L., & Dunnett, S. B. (2010). A29 Frontostriatal pathology in the (C57BL/6J) YAC128 mouse uncovered by the operant delayed alternation task. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A10.

14. Yu, L., Metzger, S., Clemens, L. E., Ehrismann, J., Ott, T., Gu, X., Nguyen, H. P. (2010). A28 Accumulation and aggregation of human mutant huntingtin and neuron atrophy in BAC-HD transgenic rat. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A9.

15. Baxa, M., Juhas, S., Pavlok, A., Vodicka, P., Juhasova, J., Hruška-Plocháň, M., Motlik, J. (2010). A26 Transgenic miniature pig as an animal model for Huntington’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A8-A9.


    您想了解更多详细资料吗?

    请与我们联系:

    TEL021-35183767021-54377179

         18502129044

    QQ3007536624

    微信:yuyanbio

    Mailyuyanbio@126.com

    欢迎您的咨询!

qq在线客服