电话:021-35183767
021-35183767
传真:021-35183767-8008
QQ:3589037137
地址:上海市闵行区兴梅路485号 XingMei Rd 485,Shanghai,China
足底热刺痛仪主要通过Hargreaves法,检测动物缩足潜伏期PWL。
疼痛甩尾和冷热板实验虽是急性疼痛热阈值的经典测量方法,这两种实验至今仍然被药理学研究采用。但这两种方法都有一些局限性,没有在痛觉过敏的行为反应研究中得到运用。
足底测试代表了一种先进的实验方法,它集合了疼痛过敏测试的优点
· 实验时,受试动物无拘束,可自由活动;
· 实验数据记录是仪器自动感应完成的,无需人为判断和记录;
· 通过聚焦红外光源于动物足底,按下开关,等待动物缩回受测足爪,仪器可自动记录红外光强度和持续时间;
· 红外光源设置了一个特殊的过滤器,能够过滤掉可见光谱,防止可见光干扰动物,影响实验结果;
· 带自检装置:反馈电路能够进行自检,能有效避免错误的实验环境;
· 实验数据会显示在液晶屏上,数据可导入U盘,或通过USB数据线导入至电脑。
· 文献引用量超过2000的足底热刺激设备;
· 数据在前板上显示,可以通过USB传送到电脑上,USB储存设备和软件都包含在标准的配件包里,
型号:37370
产品特点:
· 可自动或手动记录爪缩回时间,不需要视觉评分,无差错,测量精确
· 触摸屏控制所有功能和结果查看
· 配备USB接口,可单独工作,也可连接电脑使用
· 带数据统计软件,可将CSV文件从直接导出到USB
· 爪缩回潜伏期的分辨率为0.1s
· 红外光强度01-99 级间可调
· 可选配红外热辐射校准仪用于校准红外光源
· 6只大鼠或12只小鼠同时进行实验
主机及测试光源
主要参数:
· 操作方式:按键
· 数据读取:液晶屏显示
· 红外光强度:01-99 级间可调
· 时间分辨率:0.1s
· 红外灯泡:Halogen "Bellaphot", Mod. 64607 OSRAM, 8V-50W
· 数据转移:闪存
· 电源:85-264 VAC, 50-60Hz
· 工作温度:15°- 30°C
· 噪音:< 70dB
· 校准:红外辐射计
· 规格:85x40x35 cm
· 鼠笼:尺寸20x20x14cm,数量3个
· 净重:13.0kg
可选配Durham大鼠束缚器,配合足底热点仪,用于大鼠下颌部三叉神经痛测试。
刺激强度值(红外热辐射值)对照表
(单位:mW/cm2)
刺激强度
0
10
20
30
40
50
60
70
80
90
99
标准值辐射值
21±1
67±10
103±10
135±7
165±7
190±1
219±7
245±7
270±10
295±10
317±20
主要配置清单
37370 |
足底测试仪 (Hargreaves test), 标准套件 |
37370-001 |
控制主机 |
37370-002 |
探头 |
37000-003 |
工作台 |
37370-327 |
支架 |
37000-006 |
模块式动物围栏 (No. 3 Modules M-S 085) |
37370-005 |
Framed Glass Pane |
E-AU 041 |
存储卡,包含以下 |
|
37370-302 安装说明 52050-10 CUB 数据采集软件包 |
52010-323 |
USB 数据线 |
备件 |
|
E-HR 002 |
替换灯泡 (Halogen "Bellaphot", Mod. 64607 OSRAM, 8V-50W) |
|
选配: |
|
37300 |
红外热辐射校准仪 |
37370-278 |
附加实验原件,包括玻璃面板和动物束缚器 |
37100 |
大鼠束缚器,用于测试下颌部三叉神经痛 |
37000-145 |
面板内嵌式打印机 |
57145 |
微型打印机 |
可选配:红外热辐射测量仪
足底热刺痛仪的部分引用文献:
《Science》
1.La Montanara, Paolo, et al. "Cyclin-dependent–like kinase 5 is required for pain signaling in human sensory neurons and mouse models." Science translational medicine 12.551 (2020): eaax4846.doi:10.1126/scitranslmed.aax4846
IF 19.32
2.Feng, Jiao, et al. "A new painkiller nanomedicine to bypass the blood-brain barrier and the use of morphine." Science advances 5.2 (2019): eaau5148.doi:10.1126/sciadv.aau5148
IF 14.96
3.Hsiao, Hung-Tsung, et al. "The analgesic effect of propofol associated with the inhibition of hypoxia inducible factor and inflammasome in complex regional pain syndrome." Journal of biomedical science 26 (2019): 1-11. doi:10.1186/s12929-019-0576-z
IF 12.77
4.Zhou, Luming, et al. "Reversible CD8 T cell–neuron cross-talk causes aging-dependent neuronal regenerative decline." Science 376.6594 (2022): eabd5926. doi: 10.1126/science.abd5926
IF 63.71
《Nature》
5.Oswald, Manfred J., et al. "Cholinergic basal forebrain nucleus of Meynert regulates chronic pain-like behavior via modulation of the prelimbic cortex." Nature Communications 13.1 (2022): 5014.doi:
IF 17.69
6.Landra-Willm, Arnaud, et al. "A photoswitchable inhibitor of TREK channels controls pain in wild-type intact freely moving animals." Nature Communications 14.1 (2023): 1160.doi:
IF 17.69
7.Nees, Timo A., et al. "Role of TMEM100 in mechanically insensitive nociceptor un-silencing." Nature Communications 14.1 (2023): 1899.
doi: 10.1038/s41467-023-36806-4
IF 17.69
8.Zhang, Qiaosheng, et al. "A prototype closed-loop brain–machine interface for the study and treatment of pain." Nature Biomedical Engineering (2021): 1-13. doi: 10.1038/s41551-021-00736-7
IF 29.23
9.Zhang, Su-Bo, et al. "CircAnks1a in the spinal cord regulates hypersensitivity in a rodent model of neuropathic pain." Nature communications 10.1 (2019): 4119.doi:1
10.IF: 17.69
11.Jiang, Wenhao, et al. "PGE2 activates EP4 in subchondral bone osteoclasts to regulate osteoarthritis." Bone research 10.1 (2022): 27. doi:10.1038/s41413-022-00201-4
13.36
12.Bao, Yi-Ni, et al. "The dopamine D1–D2DR complex in the rat spinal cord promotes neuropathic pain by increasing neuronal excitability after chronic constriction injury." Experimental & Molecular Medicine 53.2 (2021): 235-249.doi:10.1038/s12276-021-00563-5
IF 12.15
13.Takeda, Ikuko, et al. "Controlled activation of cortical astrocytes modulates neuropathic pain-like behaviour." Nature communications 13.1 (2022): 4100.doi: 10.1038/s41467-022-31773-8
IF 17.69
14.Liang, Hai-Ying et al. “nNOS-expressing neurons in the vmPFC transform pPVT-derived chronic pain signals into anxiety behaviors.” Nature communications vol. 11,1 2501. 19 May. 2020, doi:10.1038/s41467-020-16198-5 doi:10.1038/s41467-020-16198-5
IF 17.69
15.Zhou, Hang, et al. "A sleep-active basalocortical pathway crucial for generation and maintenance of chronic pain." Nature Neuroscience (2023): 1-12. doi: 10.1038/s41593-022-01250-y
IF 28.77
16.Wang, Yan et al. “TRPV1 SUMOylation regulates nociceptive signaling in models of inflammatory pain.” Nature communications vol. 9,1 1529. 18 Apr. 2018, doi: 10.1038/s41467-018-03974-7
IF 17.69
17.Iwasaki, Mai, et al. "An analgesic pathway from parvocellular oxytocin neurons to the periaqueductal gray in rats." Nature Communications 14.1 (2023): 1066. doi:10.1038/s41467-023-36641-7
IF 17.69
《Cell》
18.Zhang, Fang-Xiong et al. “BK Potassium Channels Suppress Cavα2δ Subunit Function to Reduce Inflammatory and Neuropathic Pain.” Cell reports vol. 22,8 (2018): 1956-1964. doi:10.1016/j.celrep.2018.01.073
IF 10.00
19.Gui, Xianwei et al. “Botulinum toxin type A promotes microglial M2 polarization and suppresses chronic constriction injury-induced neuropathic pain through the P2X7 receptor.” Cell & bioscience vol. 10 45. 23 Mar. 2020, doi:10.1186/s13578-020-00405-3
方法学文献:
K.M. Hargreaves, R. Dubner, F. Brown, C. Flores and J. Joris: ”A New and Sensitive Method for Measuring Thermal Nociception in Cutaneous Hy-peralgesia” Pain 32: 77-88, 1988
D.C. Yeomans & H.K. Proudfit: ”Characterization of the Foot Withdrawal Response to Noxious Radiant Heat in the Rat” Pain 59: 85-97, 1994
您想了解更多详细资料吗?
请与我们联系:
TEL:021-35183767,021-54377179
18502129044
QQ:3007536034
微信:yuyanbio
Mail:yuyanbio@126.com
欢迎您的咨询!