当前位置:首页 > 疼痛与炎症研究 > Von Frey 纤维丝
疼痛与炎症研究

Von Frey 纤维丝

时间:2023-11-30来源:本站作者:玉研仪器

详细介绍

Von Frey 纤维丝(以德国生理学家 Max von Frey 的名字命名,1852-1932年),最初是由不同直径的动物和人类毛发制成的,现在是由尼龙单丝制作, 不同的型号具备不同的抗弯能力。纤维丝垂直接触皮肤,逐渐增加力直到它弯曲,由此确定施加力的大小。


· 基于 Semmes Weinstein 单丝套装,配备了可以旋转装置保护外壳,可折叠收纳;

· 提供实际力度的标度和感知强度的线性标度;
· 在临床环境中的成功使用有着很久的历史,可用于诊断感觉过敏或感觉减退; 
· 根据不同的应用和测试部位,可选择不同的套装:脚、手、唇、脸颊等;


 


主要特点: 
· 20 根纤维丝套件;
· 分级系列尼龙单丝,带不同的颜色编码;
· 旋转保护外壳,有利于收纳和携带;


工作原理:

当特定长度和直径的纤维丝以垂直角度压在皮肤上时,研究人员继续施加压力,直到纤维丝弯曲。纤维丝弯曲后,继续前进会产生更多的弯曲,但不会产生更多的压力。 





这一原理使研究人员可以在一个宽泛的公差范围内使用纤维丝对皮肤施加一个可重现的力。 



当老鼠爪子被意外接触时,啮齿动物表现出爪子缩回反射。Touch Test™ Sensory Evaluator 可用于大鼠或小鼠足底表面,动物将通过抬足动作表现出触觉反应。 






20种不同规格:



可选择:测试支架和测试鼠笼

 
为了方便用Von Frey 纤维丝刺激足底表面,我们提供了一个90x38cm的穿孔金属平台。激光穿孔形成 5X5mm 尺寸的方孔网格;金属格栅约 1mm宽,对动物舒适,也有利于实验人员查看老鼠爪子的动作情况。 


搁板涂有聚合物树脂,易于清洁。 


配合动物围栏(测试鼠笼)使用,可将3只大鼠或12小鼠同时约束在测试平台上进行测试实验。



测试平台




测试平台




十字测试网格




加高型测试支架





标准型测试支架与电子式测痛仪




电子式触觉疼痛测量仪


· 电子触觉测试仪用来替代传统的Semmes-Weinstein(Von Frey Hairs纤毛机械刺激针;

· 可直接测得动物的机械痛阈和触觉阈测量,不需要进行反复的测试和繁杂的计算。设备轻巧易用,测量精确;


型号:38450



参考文献

1. Zhi W, Baser RE, Talukder D, Mei YZ, Harte SE, Bao T. Mechanistic and thermal characterization of acupuncture for chemotherapy-induced peripheral neuropathy as measured by quantitative sensory testing. Breast Cancer Research and Treatment. 2023;197(3):535-545.
2. Wolny T, Fernández-de-Las Peñas C, Granek A, Linek P. Reliability of Ulnar Nerve Sensation Tests in Patients with Cubital Tunnel Syndrome and Healthy Subjects. Diagnostics. 2022;12(10):2347.
3. Toniolo EF, Gupta A, Franciosi AC, Gomes I, Devi LA, Dale CS. Interactions between cannabinoid and opioid receptors in a mouse model of diabetic neuropathy. Pain. 2022;163(7):1414-1423.
4. Poluha RL, De la Torre Canales G, Bonjardim LR, Conti PCR. Who is the individual that will complain about temporomandibular joint clicking? Journal of Oral Rehabilitation. 2022;49(6):593-598.
5. Lin X, Wang Q, He Z, Huang L, Wen C, Zhou D. Evaluating the similarity of different collagen-induced arthritis models to the pre-clinical phase of RA in female rats. Inflammation. 2022;45(4):1559-1567.
6. Kamimura R, Hossain MZ, Takahashi K, Saito I, Kitagawa J. Attenuation of allodynia and microglial reactivity by inhibiting the degradation of 2-arachidonoylglycerol following injury to the trigeminal nerve in mice. Heliyon. 2022;8(8):e10034.
7. Giordano R, Aliotta GE, Johannesen AS, et al. Effects of Salicornia-Based Skin Cream Application on Healthy Humans’ Experimental Model of Pain and Itching. Pharmaceuticals. 2022;15(2):150.
8. Cheng X, Mao G-P, Hu W-J, et al. Exercise combined with administration of adipose-derived stem cells ameliorates neuropathic pain after spinal cord injury. Neural Regeneration Research. 2022.
9. Aliotta GE, Lo Vecchio S, Elberling J, Arendt‐Nielsen L. Evaluation of itch and pain induced by bovine adrenal medulla (BAM) 8–22, a new human model of non‐histaminergic itch. Experimental Dermatology. 2022;31(9):1402-1410.
10. Xiao S, Zhang F, Zheng Y, et al. Synergistic effect of nanofat and mouse nerve-growth factor for promotion of sensory recovery in anterolateral thigh free flaps. Stem Cells Translational Medicine. 2021;10(2):181-189.
11. Takemoto R, Michihara S, Han L-K, Fujita N, Takahashi R. Ninjin'yoeito Alleviates Neuropathic Pain Induced by Chronic Constriction Injury in Rats. Frontiers in Nutrition. 2021;8:525629.
12. Suda M, Kawakami M, Okuyama K, et al. Validity and reliability of the Semmes-Weinstein monofilament test and the thumb localizing test in patients with stroke. Frontiers in neurology. 2021;11:625917.
13. Niddam DM, Wang S-J, Tsai S-Y. Pain sensitivity and the primary sensorimotor cortices: a multimodal neuroimaging study. Pain. 2021;162(3):846-855.
14. Lee S, Shin H-J, Noh C, et al. Ikbkb sirna-encapsulated poly (Lactic-co-glycolic acid) nanoparticles diminish neuropathic pain by inhibiting microglial activation. International journal of molecular sciences. 2021;22(11):5657.
15. Kold S, Graven-Nielsen T. Effect of anodal high-definition transcranial direct current stimulation on the pain sensitivity in a healthy population: a double-blind, sham-controlled study. Pain. 2021;162(6):1659-1668.
16. Koizumi M, Asano S, Furukawa A, et al. P2X3 receptor upregulation in trigeminal ganglion neurons through TNFα production in macrophages contributes to trigeminal neuropathic pain in rats. The Journal of Headache and Pain. 2021;22(1):31.
17. Kaswan NK, Mohammed Izham NAB, Tengku Mohamad TAS, Sulaiman MR, Perimal EK. Cardamonin modulates neuropathic pain through the possible involvement of serotonergic 5-HT1A receptor pathway in CCI-induced neuropathic pain mice model. Molecules. 2021;26(12):3677.
18. Kasielska-Trojan A, Szulia A, Zawadzki T, Antoszewski B. The Assessment of Nipple Areola Complex Sensation with Semmes-Weinstein Monofilaments—Normative Values and Its Covariates. Diagnostics. 2021;11(11):2145.
19. Härtner J, Strauss S, Pfannmöller J, Lotze M. Tactile acuity of fingertips and hand representation size in human Area 3b and Area 1 of the primary somatosensory cortex. Neuroimage. 2021;232:117912.



     您想了解更多详细资料吗?

    请与我们联系:

    TEL021-35183767021-54377179

         18502129044

    QQ3007536624

    微信:yuyanbio

    Mailyuyanbio@126.com

    欢迎您的咨询!

qq在线客服