上海玉研科学仪器有限公司

电话:021-35183767
   021-35183767

传真:021-35183767-8008

QQ:3226184308

地址:上海市闵行区兴梅路485号 XingMei Rd 485,Shanghai,China

当前位置:首页 > 脑立体定位仪 > 小鼠脑立体定位仪
脑立体定位仪

小鼠脑立体定位仪

时间:2021-12-15来源:本站作者:玉研仪器

详细介绍

小鼠脑立体定位仪是专门为小鼠准备的定位仪,是为敲除基因小鼠实验和转基因小鼠实验设计的。它是一款体积较小和比较经济的定位设备。


主要配置:包含3轴左手操作臂,小鼠嘴夹和齿杆,双面耳杆,和一个角夹探头支架。


小鼠专用型的脑立体定位仪采用了三大技术来牢固固定小鼠头部:

1、轻质的聚甲醛树脂耳棒,前端逐渐变细;

2、特殊设计的下颌夹持器;

3、非植入性橡胶头;


耳棒的高度可以独立调节,垂直方向的刻度采用了激光雕刻技术,能够非常新晰的读出耳棒的高度。

1. 可以同时定位新生鼠和小型啮齿类动物

2. 底座尺寸:25cmx25cm

3. 兼容气体麻醉机

4. 耳棒和牙棒的高度调整适合10-75g小鼠

5. Delrin®材料的耳棒,更适合于小鼠实验操作

6. 三维操作臂可以精确定位

7. 支持双操作臂工作模式

8. 可选数显模式

9. 可选全自动模式

10. 精确度标准型100um,数显型10um,全自动型1um


根据需求不同,有多种不同的型号可供选择:单臂型,双臂型,数显型,数控型,超精密敬请来电咨询。

分辨率:100微米,10微米可选


ITEM

DESCRIPTION

51730

小鼠脑立体定位仪

51730D

数显型小鼠脑立体定位仪

51733

双臂小鼠脑立体定位仪

51733D

数显双臂小鼠脑立体定位仪

51730M

电动小鼠脑立体定位仪

51731

小鼠脑立体定位仪,基座


型号:51730

标准型小鼠脑定位仪



型号:51730D

51730D为数显型小鼠定位仪,三轴数字显示,精度0.01mm


型号:51730U

51730U为超精密小鼠脑立体定位仪,精度0.01mm


型号:51730M

51730M为电动型小鼠脑立体定位仪,可设置位移距离,进行电动控制



型号:51733

双臂型小鼠定位仪

三种双臂定位仪款式可选:

51733D型, 双臂数显小鼠脑立体定位仪,精度0.01mm

51733U型,超精密双臂小鼠脑立体定位仪,精度0.01mm

51733UD,超精密双臂数显小鼠脑立体定位仪,精度0.01mm


型号:51731  小鼠脑定位仪基座,用于小鼠脑部固定


动物保温毯

用于在整个手术过程中维持动物体温;

在立体定向手术过程中,将电热垫嵌入立体定向基板内,避免交叉污染,便于清理;

可以作为一个通用的动物保温毯使用,还可以选配 大小鼠肛温探头,用于动物手术中的保温毯的温度反馈和调节;

型号:53800


主要参数:

加热垫材质:硅橡胶

温度控制范围25-45℃

温度分辨率0.1⁰C

加热器功率:24VDC@3A上限值

电源要求120/240VAC(可切换),50/60Hz,75VA

温度探头尺寸:头端直径1.6mm

控制器尺寸:12.7x9.6x3.8cm

控制器重量:181g

小鼠加热毯尺寸:7 x 7cm

大鼠加热毯尺寸:15.25 x 15.25cm

笼式加热毯尺寸:16 x 38cm


型号:53850型 


双通道动物保温毯

多种尺寸的保温垫可供选择:

小鼠加热毯尺寸:7 x 7cm

大鼠加热毯尺寸:15.25 x 15.25cm

增大号加热毯尺寸:16 x 38cm


50304,大鼠、小鼠肛温探头

温度探头尺寸:头端直径1.6mm



型号:51649-1,橡胶型小鼠耳杆

小鼠脑立体定位仪的无损伤橡胶耳杆和锯齿状口



脑立体定位仪相关配件及可选配件:


大鼠门牙固定适配器

小鼠固定适配器


 


电极夹持器

电极、螺帽、注射器夹持器


电极、注射器夹持器


微量注射器


微量注射泵


颅骨钻


小动物脑立体定位仪部分参考文献:
1. Albéri, L., Lintas, A., Kretz, R., Schwaller, B., & Villa, A. E. (2013). The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons. Journal of neurophysiology, 109(11), 2827-2841.
2. Sonati, T., Reimann, R. R., Falsig, J., Baral, P. K., O’Connor, T., Hornemann, S., Aguzzi, A. (2013). The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature, 501(7465), 102-106.
3. Ali, I., O’Brien, P., Kumar, G., Zheng, T., Jones, N. C., Pinault, D., O’Brien, T. J. (2013). Enduring Effects of Early Life Stress on Firing Patterns of Hippocampal and Thalamocortical Neurons in Rats: Implications for Limbic Epilepsy. PLOS ONE, 8(6), e66962.
4. Bell, L. A., Bell, K. A., & McQuiston, A. R. (2013). Synaptic Muscarinic Response Types in Hippocampal CA1 Interneurons Depend on Different Levels of Presynaptic Activity and Different Muscarinic Receptor Subtypes. Neuropharmacology.
5. Bolzoni, F., Bączyk, M., & Jankowska, E. (2013). Subcortical effects of transcranial direct current stimulation (tDCS) in the rat. The Journal of Physiology.
6. Bolzoni, F., Bączyk, M., & Jankowska, E. (2013). Subcortical effects of transcranial direct current stimulation (tDCS) in the rat. The Journal of Physiology.
7. Babaei, P., Tehrani, B. S., & Alizadeh, A. (2013). Effect of BDNF and adipose derived stem cells transplantation on cognitive deficit in Alzheimer model of rats. Journal of Behavioral and Brain Science, 3, 156-161.
8. Gilmartin, M. R., Miyawaki, H., Helmstetter, F. J., & Diba, K. (2013). Prefrontal Activity Links Nonoverlapping Events in Memory. The Journal of Neuroscience, 33(26), 10910-10914.
9. Feng, L., Sametsky, E. A., Gusev, A. G., & Uteshev, V. V. (2012). Responsiveness to nicotine of neurons of the caudal nucleus of the solitary tract correlates with the neuronal projection target. Journal of Neurophysiology, 108(7), 1884-1894.
10. Clarner, T., Diederichs, F., Berger, K., Denecke, B., Gan, L., Van der Valk, P., Kipp, M. (2012). Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia, 60(10), 1468-1480.
11. Girardet, C., Bonnet, M. S., Jdir, R., Sadoud, M., Thirion, S., Tardivel, C., Troadec, J. D. (2011). Central inflammation and sickness-like behavior induced by the food contaminant deoxynivalenol: A PGE2-independent mechanism.Toxicological Sciences, 124(1), 179-191.
12. Hruška-Plocháň, M., Juhas, S., Juhasova, J., Galik, J., Miyanohara, A., Marsala, M., Motlik, J. (2010). A27 Expression of the human mutant huntingtin in minipig striatum induced formation of EM48+ inclusions in the neuronal nuclei, cytoplasm and processes. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A9.
13. Brooks, S., Jones, L., & Dunnett, S. B. (2010). A29 Frontostriatal pathology in the (C57BL/6J) YAC128 mouse uncovered by the operant delayed alternation task. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A10.
14. Yu, L., Metzger, S., Clemens, L. E., Ehrismann, J., Ott, T., Gu, X., Nguyen, H. P. (2010). A28 Accumulation and aggregation of human mutant huntingtin and neuron atrophy in BAC-HD transgenic rat. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A9.
15. Baxa, M., Juhas, S., Pavlok, A., Vodicka, P., Juhasova, J., Hruška-Plocháň, M., Motlik, J. (2010). A26 Transgenic miniature pig as an animal model for Huntington’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A8-A9.





    您想了解更多详细资料吗?

    请与我们联系:

    TEL021-35183767021-54377179

         18502129044

    QQ3007536034

    微信:yuyanbio

    Mailyuyanbio@126.com

    欢迎您的咨询!

qq在线客服